First Pass Large Vocabulary Continuous Speech

Deep LSTM for Large Vocabulary Continuous Speech Recognition

Mar 21, 2017
Xu Tian, Jun Zhang, Zejun Ma, Yi He, Juan Wei, Peihao Wu, Wenchang Situ, Shuai Li, Yang Zhang

Recurrent neural networks (RNNs), especially long short-term memory (LSTM) RNNs, are effective network for sequential task like speech recognition. Deeper LSTM models perform well on large vocabulary continuous speech recognition, because of their impressive learning ability. However, it is more difficult to train a deeper network. We introduce a training framework with layer-wise training and exponential moving average methods for deeper LSTM models. It is a competitive framework that LSTM models of more than 7 layers are successfully trained on Shenma voice search data in Mandarin and they outperform the deep LSTM models trained by conventional approach. Moreover, in order for online streaming speech recognition applications, the shallow model with low real time factor is distilled from the very deep model. The recognition accuracy have little loss in the distillation process. Therefore, the model trained with the proposed training framework reduces relative 14\% character error rate, compared to original model which has the similar real-time capability. Furthermore, the novel transfer learning strategy with segmental Minimum Bayes-Risk is also introduced in the framework. The strategy makes it possible that training with only a small part of dataset could outperform full dataset training from the beginning.

* 8 pages. arXiv admin note: text overlap with arXiv:1703.01024

First-Pass Large Vocabulary Continuous Speech Recognition using Bi-Directional Recurrent DNNs

Figure 1 for First-Pass Large Vocabulary Continuous Speech Recognition using Bi-Directional Recurrent DNNs

Figure 2 for First-Pass Large Vocabulary Continuous Speech Recognition using Bi-Directional Recurrent DNNs

We present a method to perform first-pass large vocabulary continuous speech recognition using only a neural network and language model. Deep neural network acoustic models are now commonplace in HMM-based speech recognition systems, but building such systems is a complex, domain-specific task. Recent work demonstrated the feasibility of discarding the HMM sequence modeling framework by directly predicting transcript text from audio. This paper extends this approach in two ways. First, we demonstrate that a straightforward recurrent neural network architecture can achieve a high level of accuracy. Second, we propose and evaluate a modified prefix-search decoding algorithm. This approach to decoding enables first-pass speech recognition with a language model, completely unaided by the cumbersome infrastructure of HMM-based systems. Experiments on the Wall Street Journal corpus demonstrate fairly competitive word error rates, and the importance of bi-directional network recurrence.

Articulatory information and Multiview Features for Large Vocabulary Continuous Speech Recognition

Feb 16, 2018
Vikramjit Mitra, Wen Wang, Chris Bartels, Horacio Franco, Dimitra Vergyri

This paper explores the use of multi-view features and their discriminative transforms in a convolutional deep neural network (CNN) architecture for a continuous large vocabulary speech recognition task. Mel-filterbank energies and perceptually motivated forced damped oscillator coefficient (DOC) features are used after feature-space maximum-likelihood linear regression (fMLLR) transforms, which are combined and fed as a multi-view feature to a single CNN acoustic model. Use of multi-view feature representation demonstrated significant reduction in word error rates (WERs) compared to the use of individual features by themselves. In addition, when articulatory information was used as an additional input to a fused deep neural network (DNN) and CNN acoustic model, it was found to demonstrate further reduction in WER for the Switchboard subset and the CallHome subset (containing partly non-native accented speech) of the NIST 2000 conversational telephone speech test set, reducing the error rate by 12% relative to the baseline in both cases. This work shows that multi-view features in association with articulatory information can improve speech recognition robustness to spontaneous and non-native speech.

* 5 pages

An Asynchronous WFST-Based Decoder For Automatic Speech Recognition

Mar 16, 2021
Hang Lv, Zhehuai Chen, Hainan Xu, Daniel Povey, Lei Xie, Sanjeev Khudanpur

We introduce asynchronous dynamic decoder, which adopts an efficient A* algorithm to incorporate big language models in the one-pass decoding for large vocabulary continuous speech recognition. Unlike standard one-pass decoding with on-the-fly composition decoder which might induce a significant computation overhead, the asynchronous dynamic decoder has a novel design where it has two fronts, with one performing "exploration" and the other "backfill". The computation of the two fronts alternates in the decoding process, resulting in more effective pruning than the standard one-pass decoding with an on-the-fly composition decoder. Experiments show that the proposed decoder works notably faster than the standard one-pass decoding with on-the-fly composition decoder, while the acceleration will be more obvious with the increment of data complexity.

* 5 pages, 5 figures, icassp

Deep-FSMN for Large Vocabulary Continuous Speech Recognition

Mar 04, 2018
Shiliang Zhang, Ming Lei, Zhijie Yan, Lirong Dai

In this paper, we present an improved feedforward sequential memory networks (FSMN) architecture, namely Deep-FSMN (DFSMN), by introducing skip connections between memory blocks in adjacent layers. These skip connections enable the information flow across different layers and thus alleviate the gradient vanishing problem when building very deep structure. As a result, DFSMN significantly benefits from these skip connections and deep structure. We have compared the performance of DFSMN to BLSTM both with and without lower frame rate (LFR) on several large speech recognition tasks, including English and Mandarin. Experimental results shown that DFSMN can consistently outperform BLSTM with dramatic gain, especially trained with LFR using CD-Phone as modeling units. In the 2000 hours Fisher (FSH) task, the proposed DFSMN can achieve a word error rate of 9.4% by purely using the cross-entropy criterion and decoding with a 3-gram language model, which achieves a 1.5% absolute improvement compared to the BLSTM. In a 20000 hours Mandarin recognition task, the LFR trained DFSMN can achieve more than 20% relative improvement compared to the LFR trained BLSTM. Moreover, we can easily design the lookahead filter order of the memory blocks in DFSMN to control the latency for real-time applications.

Voice trigger detection from LVCSR hypothesis lattices using bidirectional lattice recurrent neural networks

Feb 29, 2020
Woojay Jeon, Leo Liu, Henry Mason

We propose a method to reduce false voice triggers of a speech-enabled personal assistant by post-processing the hypothesis lattice of a server-side large-vocabulary continuous speech recognizer (LVCSR) via a neural network. We first discuss how an estimate of the posterior probability of the trigger phrase can be obtained from the hypothesis lattice using known techniques to perform detection, then investigate a statistical model that processes the lattice in a more explicitly data-driven, discriminative manner. We propose using a Bidirectional Lattice Recurrent Neural Network (LatticeRNN) for the task, and show that it can significantly improve detection accuracy over using the 1-best result or the posterior.

* ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom, 2019, pp. 6356-6360
* Presented at IEEE ICASSP, May 2019

Applying GPGPU to Recurrent Neural Network Language Model based Fast Network Search in the Real-Time LVCSR

Jul 23, 2020
Kyungmin Lee, Chiyoun Park, Ilhwan Kim, Namhoon Kim, Jaewon Lee

Recurrent Neural Network Language Models (RNNLMs) have started to be used in various fields of speech recognition due to their outstanding performance. However, the high computational complexity of RNNLMs has been a hurdle in applying the RNNLM to a real-time Large Vocabulary Continuous Speech Recognition (LVCSR). In order to accelerate the speed of RNNLM-based network searches during decoding, we apply the General Purpose Graphic Processing Units (GPGPUs). This paper proposes a novel method of applying GPGPUs to RNNLM-based graph traversals. We have achieved our goal by reducing redundant computations on CPUs and amount of transfer between GPGPUs and CPUs. The proposed approach was evaluated on both WSJ corpus and in-house data. Experiments shows that the proposed approach achieves the real-time speed in various circumstances while maintaining the Word Error Rate (WER) to be relatively 10% lower than that of n-gram models.

* 4 pages, 2 figures, Interspeech2015(Accepted)

Learning To Detect Keyword Parts And Whole By Smoothed Max Pooling

Jan 25, 2020
Hyun-Jin Park, Patrick Violette, Niranjan Subrahmanya

We propose smoothed max pooling loss and its application to keyword spotting systems. The proposed approach jointly trains an encoder (to detect keyword parts) and a decoder (to detect whole keyword) in a semi-supervised manner. The proposed new loss function allows training a model to detect parts and whole of a keyword, without strictly depending on frame-level labeling from LVCSR (Large vocabulary continuous speech recognition), making further optimization possible. The proposed system outperforms the baseline keyword spotting model in [1] due to increased optimizability. Further, it can be more easily adapted for on-device learning applications due to reduced dependency on LVCSR.

* Accepted in International Conference on Acoustics, Speech, and Signal Processing 2020

Effects of Number of Filters of Convolutional Layers on Speech Recognition Model Accuracy

Feb 03, 2021
James Mou, Jun Li

Inspired by the progress of the End-to-End approach [1], this paper systematically studies the effects of Number of Filters of convolutional layers on the model prediction accuracy of CNN+RNN (Convolutional Neural Networks adding to Recurrent Neural Networks) for ASR Models (Automatic Speech Recognition). Experimental results show that only when the CNN Number of Filters exceeds a certain threshold value is adding CNN to RNN able to improve the performance of the CNN+RNN speech recognition model, otherwise some parameter ranges of CNN can render it useless to add the CNN to the RNN model. Our results show a strong dependency of word accuracy on the Number of Filters of convolutional layers. Based on the experimental results, the paper suggests a possible hypothesis of Sound-2-Vector Embedding (Convolutional Embedding) to explain the above observations. Based on this Embedding hypothesis and the optimization of parameters, the paper develops an End-to-End speech recognition system which has a high word accuracy but also has a light model-weight. The developed LVCSR (Large Vocabulary Continuous Speech Recognition) model has achieved quite a high word accuracy of 90.2% only by its Acoustic Model alone, without any assistance from intermediate phonetic representation and any Language Model. Its acoustic model contains only 4.4 million weight parameters, compared to the 35~68 million acoustic-model weight parameters in DeepSpeech2 [2] (one of the top state-of-the-art LVCSR models) which can achieve a word accuracy of 91.5%. The light-weighted model is good for improving the transcribing computing efficiency and also useful for mobile devices, Driverless Vehicles, etc. Our model weight is reduced to ~10% the size of DeepSpeech2, but our model accuracy remains close to that of DeepSpeech2. If combined with a Language Model, our LVCSR system is able to achieve 91.5% word accuracy.

* 8 pages, 9 figures, 3 tables, to be published in the Proc. of the 19th IEEE International Conference on Machine Learning and Applications, Page 971-978, 2020. DOI 10.1109/ICMLA51294.2020.00158. \c{opyright} 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising purposes

Future Vector Enhanced LSTM Language Model for LVCSR

Jul 31, 2020
Qi Liu, Yanmin Qian, Kai Yu

Language models (LM) play an important role in large vocabulary continuous speech recognition (LVCSR). However, traditional language models only predict next single word with given history, while the consecutive predictions on a sequence of words are usually demanded and useful in LVCSR. The mismatch between the single word prediction modeling in trained and the long term sequence prediction in read demands may lead to the performance degradation. In this paper, a novel enhanced long short-term memory (LSTM) LM using the future vector is proposed. In addition to the given history, the rest of the sequence will be also embedded by future vectors. This future vector can be incorporated with the LSTM LM, so it has the ability to model much longer term sequence level information. Experiments show that, the proposed new LSTM LM gets a better result on BLEU scores for long term sequence prediction. For the speech recognition rescoring, although the proposed LSTM LM obtains very slight gains, the new model seems obtain the great complementary with the conventional LSTM LM. Rescoring using both the new and conventional LSTM LMs can achieve a very large improvement on the word error rate.

* Accepted by ASRU-2017

shoefromeder.blogspot.com

Source: https://www.catalyzex.com/s/Large%20Vocabulary%20Continuous%20Speech

0 Response to "First Pass Large Vocabulary Continuous Speech"

Enregistrer un commentaire

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel